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This work presents a simulation technique that can be used to compute the thermal interaction between a gas
and a cylindrically shaped wall. The method is computationally simple and is based on the Maxwell-
Smoluchowski thermal wall scenario often used for the slit pore geometry. A geometric argument is used to
find the corresponding thermalization mechanism for the cylindrical confinement. The algorithm serves as a
thermostat, which enables one to perform constant-temperature simulations. By means of simple numerical
simulations, Smoluchowski’s expression for self-diffusivity Ds is then recovered in reduced units. The tangen-
tial momentum accommodation coefficient is interpreted as a coupling constant for the thermostat similar to the
one used for the ordinary Andersen thermostat but applied locally onto the boundary crossing particles.
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I. INTRODUCTION

Diffusion of gases within simple nanopores is an area of
research of practical importance due to the rising interest in
diffusion in carbon nanotubes �1–3�. If the mean-free path of
the gas particles exceeds the pore diameter, kinetic theory
based on the Chapman-Enskog normal solution �4� is ex-
pected to break down and the coefficient of self- �or tracer�
diffusion Ds becomes density independent. In the �extreme�
low-density regime gas-gas interactions can be neglected and
diffusion is fully quantified by tracer diffusion. A century ago
Knudsen derived a simple equation for the density indepen-
dent tracer diffusion of a rarefied gas confined within a cy-
lindrical pore �5�. Knudsen assumed all gas-wall collisions
were governed by the cosine law of reflection �6�. Smolu-
chowski later generalized the model by including Maxwell’s
assumption that only a fraction f of the total number of col-
lisions was scattered diffusely, while the remainder 1− f is
reflected specularly �7,8�. This fraction is the tangential mo-
mentum accommodation coefficient �TMAC�. The TMAC
governs the degree of slip at the surface. The physical picture
of the Smoluchowski model has gained interest due to appli-
cations in gas separations. For instance, Arya was able to
show that gases having the same nominal properties �mass,
viscosity, density� but different accommodation coefficients
may be kinetically separated in the Knudsen regime �9�. In
order to achieve efficient separation a detailed understanding
of the mechanism describing the gas-wall collision is neces-
sary. Two types of simulations are often used to solve this
problem. The first type involves molecular dynamics �MD�
simulations in which the wall consists of atoms that interact
with the gas via a Lennard-Jones type of potential. Arya was
able to relate the coefficient f to the parameters of the
Lennard-Jones potential by looking at the reflected and the
incoming drift velocity �9�. Jakobtorweihen et al. calculated
f via the ratio between the number of diffusive collisions and
the total number of collisions at the gas-wall surface �2�.

In the second type of simulations the gas-wall interaction
is modeled by a simple reflection law. As mentioned by

Celestini et al. there is no suitable way of introducing f in
these so-called ”billiardlike simulations” �BLS� �10�. An in-
teresting example of BLS is the thermal wall scenario, used
by Tenenbaum et al. to study the limit of validity of Fourier’s
law �12�. The thermal wall scenario states that whenever a
gas particle crosses a boundary it is emitted back from the
wall with a velocity drawn from a particular distribution at a
given wall temperature. Thermal walls have been success-
fully implemented for the slit pore geometry where they have
been mainly used to generate stationary nonequilibrium
states �12,13�.

II. THEORETICAL BACKGROUND

The goal of this research is to show that the TMAC can be
introduced in a more natural manner for BLS, by construct-
ing a thermal wall for the cylindrical geometry. The proce-
dure starts by considering a cylinder where periodic bound-
ary conditions are applied in the z-direction. The cylinder has
diameter d and length L. The nonperiodic xy-plane is now
considered. If the thermostat is switched off and a particle
would cross the boundary, a specular reflection would pro-
duce a velocity, v�spec= �vx

spec ,vy
spec�

v�spec = v� in − 2�v� in · n̂�n̂ , �1�

where n̂= 1
r �x ,y� and v� in= �vx

in ,vy
in� is the incoming velocity.

A specular collision would leave the z-component of the ve-
locity unaltered. A position update in the xy plane would
bring the particle back to side of the wall from which it
came. If the thermostat is switched on one considers an ad-
ditional step. Suppose a gas particle located at the wall has
position r�= �x ,y� in the nonperiodic xy plane, with �r��= d

2
−O��t�. The particle has been brought back via a specular
collision, after which a thermostat has scattered the particle
diffusively. The particle now has an arbitrary velocity v�ran

= �v� ,v� ,vz�. The parallel components of this velocity,
�v� ,vz�, do not change upon a specular collision. They have
been drawn out of a Maxwell velocity distribution*gustafverbeek@gmail.com
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f�v�� =� m

2�kBTw
exp� − mv�

2

2kBTw
	 . �2�

The orthogonal/normal component flips sign upon a specular
collision and was sampled out of the following distribution
�11–13�

f�v�� =
m

kBTw
v� exp�− mv�

2

2kBTw
	 , �3�

where Tw is the wall/thermostat temperature. The thermali-
zation mechanism described by the Eqs. �2� and �3� was
proposed by Tenenbaum to study heat transfer in the slit pore
geometry �12,13�. Recently, Celestini et al. noticed that Eq.
�3� is compatible with the cosine law of diffuse scattering
�10�, but perhaps it is easier to introduce this equation via the
gas-wall collision frequency. Equation �3� is used if one
wants to sample the flux of particles hitting the wall �14,15�.
This flux is determined by the number of particles present in
the volume v�dtdS; i.e.,

dNhit�t + dt,v� + dv�� = �� m

2�kBT

�exp
−
mv�

2

2kBT
�v�dv�dtdS ,

�4�

with v���0,��. One can multiply with and divide by
4kBT /m in order to obtain the following expression for the
particle flux

dNhit�t + dt,v� + dv�� =
�

4
vthermal m

kBT
v�

�exp
−
mv�

2

2kBT
�dv�dtdS , �5�

where vthermal=�8kBT /�m. By defining f�v�� via Eq. �3�,
the following shorthand notation is possible:

dNhit�t + dt,v� + dv�� =
�

4
vthermalf�v��dv�dtdS �6�

The normal component of the velocity can now be integrated
over the range �0,��. This integral is the normalization con-
dition or zeroth moment of f�v�� and equals one. It is also
possible to integrate over the surface dS. If it is assumed that
the local density to some approximation can be written as a
constant,

� =
N

V
=

4N

�d2L
, �7�

then the surface integration delivers a factor �dL, which is
the surface area of the cylinder. Substitution of the approxi-
mation for the local density and carrying out the integration
at the same time produces

dNhit�t,t + dt� =
N

d
vthermaldt . �8�

The gas-wall collision frequency is then

�gw =
N

d
vthermal, �9�

where N is the number of particles present and d is the cyl-
inder diameter. This result will be tested with numerical
simulations.

The angle of reflection is obtained by transforming the set
�v� ,v�� into �vx ,vy� �the z component is not transformed�.
This is realized by treating the components v� and v� as
vectors with a x and y component. In Fig. 1 a sketch is given
of the decomposition. A quick inspection of Fig. 1 shows that

v�,x = v� cos 	 = v�

x

r

v�,y = v� sin 	 = v�

y

r
, �10�

where r=�x2+y2. A similar analysis can be applied onto v� �

yielding �v�,x ,v�,y�. The total x-component of the velocity,
vx

ref, is the sum of v�,x and v�,x; i.e.,

vx
ref = v�

x

r
− v�

y

r
. �11�

This procedure can be repeated to give an expression for vy
ref.

In Fig. 1 the arbitrary velocity in the xy-plane is drawn with
the same sign as the outward normal unit vector n̂. The re-
flected velocity must have the opposite sign. This is achieved
by flipping the sign of the v� component of vx

ref and vy
ref.

Thus, in order to guarantee v�ref · n̂
0, one is left with

vx
ref = − v�

x

r
− v�

y

r
. �12�

There is no need to flip the sign of vz
ref and this component is

directly sampled from Eq. �2�. The reflected velocities upon
a diffusive gas-wall collision are given by

v||
v y

v x

v

v||y

v||x

θ

θ

x

y

r

θ

FIG. 1. Decomposition of v�� and v� � into the x and y
component.
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�vx
ref

vy
ref

vz
ref  =

1

r�− x − y 0

− y x 0

0 0 r
�v�

v�

vz
 , �13�

where r=�x2+y2, and x and y are the coordinates of the
boundary crossing particle. Equation �13� also makes the fol-
lowing shorthand notation possible:

v�ref = R̃v�ran. �14�

This notation is used when discussing the numerical imple-
mentation of the collision rules. Since the reflected velocities
are drawn out of distributions that correspond to the thermo-
stat temperature, the next step is to select a strength of cou-
pling to the heat bath. This coupling strength is determined
by the frequency of diffuse collisions, i.e., the number of gas
particles that are scattered diffusively per unit time. Such a
coupling constant already exists for the Andersen thermostat
and is denoted � �16�. As long as the gas particles are inside
the cylinder, the potential energy of the gas particles is given
by Up=� jUp,j =0 and the following equation of motion is
used:

r��t + �t� = r��t� + v��t , �15�

where the position of the gas particle in three dimensions is
given by r�= �x ,y ,z�. By switching off the Lennard-Jones in-
teraction the only type of collisions that can occur are gas-
wall collisions. This enables one to study the rarefied gas
regime. Consider the nonperiodic xy-plane and form rj

=�xj
2+yj

2. As soon as gas particle j �with velocity v� j
in� crosses

the boundary, rj 
d
2 →Up,j =+�, the following procedure is

started:
�1� first the outward normal vector n̂j is formed out of the

particle coordinates �xj ,yj�;
�2� n̂j is used to reflect the particle velocity specularly via

Eq. �1�; the particle position is updated in the xy-plane via
r� j

new=r� j�tend�+v� j
spec�t, where r� j

new= �xj
new ,yj

new�. The position
update resets the potential energy of particle j back to zero
�see Fig. 2 and note that rn=r� · n̂�. The specular collision �the
velocity reflection plus the “momentum absorption” via the
position update� also guarantees an orthogonal momentum
transfer between the gas particle and the cylindrical wall of
��mv�,j�=2m�v� j

in · n̂j�. The momentum transfer per collision
is needed if one tries to evaluate the normal pressure of an
ideal gas �14�. The z coordinate of particle j is not updated.

�3� A uniform random number, �, between 0 and 1 is
drawn and compared with ��t. If �
��t, three new veloc-
ity components are drawn out of velocity distributions Eqs.

�2� and �3� to form v�ran. The matrix R̃j is formed out of the
set �xj

new ,yj
new�. The particle is assigned a new velocity with

v� j
new=v� j

ref = R̃jv�ran. Without the position update in the previ-
ous step a particle could get stuck behind the wall �and stays
there� if v� j

ref · n̂j 
v� j
in · n̂j.

�4� The positions of the particles that have not crossed the
wall are unaffected �12�.

�5� Up=0 and Eq. �15� is used again for all particles.

III. SIMULATIONS

This research deals with a cylinder that was periodically
copied in the z-direction containing 400 spherical gas par-
ticles. The reduced mass of the particles was fixed to m�

=0.5. The cylinder diameter is expressed in units �, the
atomic diameter, and has value d�=d /�=12. The length of
the cylinder was chosen to be 125 units of �. The unit of
kinetic energy is kBT, where kB is the Boltzmann constant.
The reduced wall temperature was fixed to Tw

� =2.8. If the gas
particles interacted with each other through a Lennard-Jones
potential this value would correspond with a temperature of
335K for argon. The reduced unit of time is t�

= t / ���m /kBT� and the reduced velocity is given by v�

=v�m /kBT. The time step used was �t�=0.003. Here ��t
varied between 1 and 0.3. The physical quantities in this
work are reported in reduced units denoted with an asterisk
� �� �17�. They were calculated using a block average �18�.
The length of each block varied between 4.2�104 and 2.7
�105 time steps depending on the value of ��t. Each block
delivered two samples for the velocity auto correlation func-
tion �VACF�. A typical run consisted of 600 blocks.

By counting the number of diffuse collisions in time per
block and then computing the average over all blocks, a lin-
ear fit of the type �dif f�t delivers the reduced diffuse gas-wall
collision frequency, �dif f�. This result was being compared
with the expression that follows from kinetic theory consid-
erations

�dif f� =
N

d�vthermal��t , �16�

where the thermal velocity is given by vthermal=� 8Tg
�

�m� , N
=400 and Tg

�=Tw
� =2.8. Figure 3 shows that the numerical

simulations follow Eq. �16� very closely. The algorithm al-
lows one to perform constant-temperature simulations. If
��t=1 the number of diffuse collisions equals the total num-

r(tend)=r(tend -∆t)+v in∆t

r new

r(tend -∆t) z

n

r(tend)

rn < d/2 rn > d/2

rn
new=rn(tend)-v in n ∆t

FIG. 2. Schematic representation of the boundary crossing. At
time t= tend the particle has just crossed the thermal wall in one unit
of time and the potential energy has become infinite. The velocity in
the nonperiodic xy plane is updated via Eq. �1� and the normal
component of the position at r��tend� is updated in order to bring the
particle back to the other side of the wall and reset the potential
energy back to zero �see step 2 of the procedure�. At r�new the par-
ticle starts a new trajectory characterized by a new constant velocity
in the nonperiodic xy plane.
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ber of gas-wall collisions. Thus the quantity ��t is the frac-
tion of total collisions which are diffusive. A final test for the
boundary condition is the coefficient of self-diffusion of an
ideal gas confined within a cylindrical thermal wall. The re-
duced self-diffusion coefficient is calculated with the Green-
Kubo integral �19�

Ds
� = lim

�→�
�

t=0

�

�vz
��t�vz

��0��dt , �17�

where the value of � is the cutoff time defined as the time it
takes the VACF to decay to zero. If � is chosen not large
enough, a slightly smaller value of Ds

� will be measured. In
practice, a short simulation determined the value of �. De-
pending on the value of ��t, � varied between 2.8�104 and
1.8�105 time steps. To improve statistics even further, av-
erages are taken over 12 independent simulations. The VACF
is sampled every 25–150 time steps, depending on the size of
�. Gas wall collisions are fully responsible for the decorrela-
tion of the VACF because there is no force term present in
Eq. �15�. In Fig. 4 Ds is plotted in reduced units as a function
of ��t. The simulation results have also been compared with
Smoluchowski’s expression for self-diffusivity in reduced
units

D�Sm� =
d�

3
vthermal
2 − ��t

��t
� , �18�

where Tg
�=2.8. Error bars are the size of the symbols. As can

be seen in Fig. 4, the agreement between the two reduced

quantities is excellent. In the limit ��t→1, Knudsen’s ex-
pression for the coefficient of self-diffusion is obtained. Thus
one concludes that f =��t.

IV. DISCUSSION AND CONCLUSIONS

The stochastic boundary condition for the cylindrical ther-
mal wall has been derived on the basis of a simple geometric
argument. An important parameter was the coupling constant
to a heat bath, �, which determines if a particle that has
crossed the thermal wall is selected to undergo a diffusive
collision. To test whether the boundary condition was correct
the coefficient of self-diffusion of an ideal gas has been cal-
culated using the time-correlation formalism. Numerical
simulations then showed that Smoluchowski’s result was re-
covered in reduced units. These simulations also revealed
that the quantity ��t equals the tangential momentum ac-
commodation coefficient f . Here f was an input parameter
and does not need to be calculated. Interestingly, no intermo-
lecular potential, like the Lennard-Jones interaction, was
needed to reach the conclusion of the Smoluchowski model
�Eq. �18��. The method makes it is possible to simulate gas
flows in nanotubes. The algorithm is a computationally
cheap procedure for sampling the NVT ensemble, while
obeying the physical theory constructed by Maxwell, Knud-
sen and Smoluchowski.
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